Электронная картография и электронно-картографические системы. Требования к электронным картографическим системам Требования к источникам данных

Электронная картография и электронно-картографические системы. Требования к электронным картографическим системам Требования к источникам данных

При использовании судоводителями традиционных бумажных карт затраты времени для снятия координат с дисплея приемоиндикатора (ПИ) и нанесения их на карту, которая недостаточно точна, приводят к тому, что обсервация не является текущей, в нее вносятся дополнительные погрешности.

Кроме того, при плавании в стесненных условиях наносить координаты судна на карту просто некогда. В данном случае необходимо иметь отображение места судна в реальном масштабе времени, что возможно при использовании навигационной карты на электронном дисплее (электронной карты). Последнее десятилетие XX века характеризуется развитием морской электронной картографии. К настоящему времени это новое направление навигационной технологии приобрело реальность. Электронная картография позволяет коренным образом улучшить организацию работы судоводителей и облегчить ее, снизить навигационную аварийность.

Можно утверждать, что на наших глазах происходит техническая революция в судовождении. Необходимость обеспечить непрерывный и объективный контроль за местоположением и движением судна и наблюдаемых целей, автоматизировать измерения и их обработку, представлять наглядную и достоверную информацию в виде, пригодном для немедленного использования, привела к разработке и использованию в радиолокации систем автоматической радиолокационной прокладки (САРП), а в радионавигации - автоматических приемоиндикаторов спутниковых радионавигационных систем и комплексных индикаторов навигационной обстановки с электронными картами.

Элементы электронной картографии впервые начали использоваться в судовых системах автоматической радиолокационной прокладки и в береговых системах управления движением судов. Такие карты получили название упрощенных или стилизованных. Электронные карты нового поколения создаются в специальных центрах, имеющих лицензию национального гидрографического управления и отвечающих за полноту и правильность отображения навигационной обстановки. Картографические базы данных, используемые и при составлении обычных бумажных карт, преобразуются в цифровую форму, записываются на магнитные диски или иные типы носителей, затем на судне индицируются на экране дисплея (видеопрокладчика) с высокой разрешающей способностью.

История создания электронных карт имеет следующую хронологию:

В 1982 г. Международная морская организация (ИМО) опубликовала в предварительной версии стандарт, определяющий характеристики ECDIS (Electronic Chart Display and Information System). Существует также стандарт Международной гидрографической организации (МГО), устанавливающий требования к ECDIS.

В 1987 г. была утверждена координационная группа ИМО/МГО для разработки технико-эксплуатационных требований к судовой системе отображения электронных карт и информации. При этом имелось в виду, что в случае удовлетворения этих требований ECDIS будет признаваться законным эквивалентом бумажных карт.

Электронная карта должна отображать следующий минимум картографических данных: контур береговой линии, глубины и высоты, безопасные границы по глубине, подводные препятствия, стационарные и плавучие навигационные средства, морские пути (фарватеры, каналы, рекомендованные курсы, системы разделения движения судов), запретные и ограниченные для плавания районы, числовой и линейный масштабы отображаемой карты, значения ограничивающих карту координат и, как минимум, по одной промежуточной линии, обозначающей параллель и меридиан. Кроме того, по желанию судоводителя на экране могут отображаться другие картографические данные из перечня, определенного эксплуатационными требованиями ИМО к ECDIS, например, справочные данные о береговых и плавучих средствах навигационного обеспечения, правила плавания, различные предупреждения навигационного характера, пути движения паромов, подводные трассы кабелей и трубопроводов, геодезическая информация (геодезическая основа, дата создания и дата последней корректуры электронной карты) и пр.

Если ECDIS сопрягается с САРП, то на экране видеопрокладчика можно наблюдать движение других судов с соответствующими векторами их перемещений. На экране ECDIS в реальном масштабе времени отображается отметка собственного судна, перемещающаяся в соответствии с данными, полученными от GPS. Электронная карта воспроизводит морскую навигационную карту меркаторской проекции с ориентацией «Норд» и стабилизацией «Истинное движение», то есть символ судна перемещается по неподвижной электронной карте. Смена отображаемого участка карты на соседний участок осуществляется автоматически (при необходимости - вручную) при приближении судна на определенное расстояние к краю карты.

Видеопрокладчик должен иметь возможность отображать электронные карты в масштабах , адекватных масштабам стандартным морских навигационных карт. Предусматривается возможность изменения масштабов, как минимум в два раза, как в сторону увеличения, так и в сторону уменьшения. Надо иметь в виду, что увеличение масштаба означает лишь увеличение изображения участка карты, но это увеличение не сопровождается большей детализацией участка побережья или местности. ECDIS имеет возможность записывать данные о перемещении судна в течение определенного времени (например, в течение 36 часов), то есть - вести «судовой журнал». Устройство носителя картографических данных должно исключить их стирание или изменение в судовых условиях. При этом должна обеспечиваться возможность корректуры электронных карт на судне как автоматически с использованием систем спутниковой связи, так и вручную путем внесения судоводителем дополнительных символов. По мере накопления корректуры пользователи периодически, например, ежеквартально, могут получать полную обновленную версию электронной карты. Работая с электронным каталогом, судоводитель может подобрать электронные карты всех необходимых масштабов на предстоящий переход. На этих картах выполняется предварительная электронная прокладка маршрута предстоящего перехода. Маршрутные точки могут наноситься либо по географическим координатам, либо с помощью специального маркера по пеленгу и дистанции относительно выбранного навигационного ориентира. Линии предварительной прокладки выделяются на экране особым цветом. Может быть выполнен «подъем» навигационной карты, для чего в любом месте экрана могут быть нанесены точки, сплошные и прерывистые линии, условные знаки, цифры и буквы. С учетом особенностей района плавания и характеристик судна в ECDIS могут быть введены допустимые значения отклонений судна от заданной линии пути, допустимые значения минимальных дистанций сближения с выделенными навигационными опасностями, а также дистанций срабатывания предупредительной сигнализации при подходе к точкам поворота.

Для текущего местоположения судна ECDIS должна рассчитывать и индицировать в буквенно-цифровой форме следующую текущую навигационную информацию:

    Дату и время (гринвичское или поясное);

    Географические координаты судна с обозначением способа их определения;

    Боковое отклонение судна от заданной линии пути (СТЕ - cross track error) с указанием стороны (знака) отклонения

    Дистанцию и пеленг на очередную маршрутную точку (DIST ТО WP, BRG ТО WP) и время плавания до нее (TIME ТО WP);

    Географические координаты маркера («+»), который судоводитель может установить в любой точке экрана;

    Пеленг на маркер и дистанцию до него (COURSOR IIG. COURSOR RNG).

Наблюдая за перемещением отметки собственного судна по экрану ECDIS, судоводитель может осуществлять глазомерную проводку судна по заданной линии пути, учитывая также объективную цифровую информацию. При наличии надежной и высокоточной системы определения места судна ECDIS становится важнейшим техническим средством навигации не только в прибрежных водах, но и в узкостях, так как обеспечивает мгновенный контроль за местоположением и движением судна, прогнозирование развития навигационной ситуации, оперативное планирование и контроль маневров, безошибочность опознавания навигационных ориентиров.

Требования к электронным картам были разработаны в 1995 году 19-й Ассамблеей ИМО и оформлены Резолюцией А. 817(19), затем был разработан стандарт морских электронных карт № 1174 и начались разработки национальных стандартов. В требованиях ИМО к ECDIS отмечалось, что первичной функцией системы является обеспечение безопасности мореплавания. Система должна отображать всю картографическую информацию, необходимую для безопасного и эффективного судовождения. Такая информация должна официально гото-Виться и распространяться гидрографическими службами, уполномоченными правительствами стран. ECDIS должна обеспечивать надежность и доступность навигационной информации, предусматривать соответствующее резервирование и документирование данных рейса. Такие системы с 2001 года рассматриваются как легальный эквивалент бумажных навигационных карт. Вместе с тем, судоводитель должен реально оценивать и учитывать технические ограничения ECDIS, в том числе привязку к географическим координатам, а не к побережью, зависимость от точности навигационных датчиков и ограничений используемых СРНС, опасность использования неприемлемого масштаба электронной карты, возможную неполноту навигационной информации на этой карте и т. д. Даже кратковременная неисправность или отказ ECDIS может привести к полной потере контроля за обстановкой и своего места и, как следствие, к навигационной аварии.

Существует также проблема, связанная с системой координат. В международных стандартах на ECDIS определено, что используемая картографическая информация должна иметь американскую систему координат WGS-84. В этой системе функционирует и GPS (СРНС НАВСТАР). Однако российская СРНС ГЛОНАСС имеет собственную геодезическую основу ПЗ-90, а отечественные бумажные карты созданы по референц-эллипсоиду Красовского (иногда его называют «Пулково-42»). Несмотря на указанные ограничения и сложности уже сейчас на современных судах устанавливают по два дисплея ECDIS, каждый из которых имеет автономный источник электропитания. При этом дисплеи соединяют с основными техническими средствами навигации - гирокомпасом, лагом, приемоиндикатором СРНС GPS. В этом случае электронная карта превращается в навигационный автоматизированный комплекс, позволяющий решать различные задачи судовождения.

Понятно, что такой комплекс должен использоваться совместно с другими техническими средствами навигации, в частности, с судовой РЛС и эхолотом. Имеются возможности использования электронных карт и на яхтах. Примером может служить кругосветное плавание яхты «Апостол Андрей» под командованием заслуженного мастера спорта РФ Н.А. Литау в 1996-1999 годах (яхта обогнула земной шар, проследовав по всем четырем океанам, прошла впервые в истории Северным морским путем в западном направлении) на яхте использовались только электронные карты, для чего были установлены два дисплея. Несомненно, что со временем ECDIS полностью заменит бумажные карты и будет таким же обязательным навигационным средством , как сейчас гироскопический и магнитный компасы, лаг или судовая радиолокационная станция.


ECDIS - Electronic Chart Display & Information System - основаны на использовании и отображении цифровой картографи­ческой и навигационно-гидрографической информации в виде электронных карт. Они представляют собой перспективные интегрированные информационные системы, предназначенные для решения комплекса задач судовождения, автоматизации работы судоводителя и повышения навигационной безопасности мореплавания.

Интегрированность ECDIS подразумевает, что они объединяют информацию о местоположении судна на основании счисления ко­ординат по данным лага и гирокомпаса, обсерваций по спутнико­вым навигационным системам, в совокупности с картографической и радиолокационной информацией о навигационной обстановке.

Информационное назначение ECDIS определяется ее способностью представлять судоводителю параметры картографических объектов (ориентиров, опасностей, фарватеров, глубин и др.) и данные об условиях плавания по всему маршруту перехода.

Навигационное назначение определяется решением как тради­ционных задач (счисление, прокладка, введение поправок в счисли- мые координаты, помощь в удержании судна на заданном курсе и др.), так и новых задач по оценке навигационной безопасности плавания, выработке рекомендаций по безопасному маневрированию, автоматизации процессов и процедур с электронной картой (ЭК) и ее использованию для мореплавания.

Электронные навигационные карты разделяются на растровые и векторные. Растровые карты нашли более широкое применение в видеопрокладчиках различных фирм для обеспечения нужд море­плавания. Сегодня национальные гидрографические службы про­изводят такие системы и подтверждают возможность их использо­вания.

Растровые навигационные карты представляют собой точные копии бумажных карт. Они получаются путем сканирования с высоким разрешением бумажных карт или их пластиковых аналогов с последующей обработкой, включая уменьшение размеров файла с помощью методов сжатия информации, добавления данных для его описания, проекции и т. п.

Последующая обработка позволяет современному программно­му обеспечению производить автоматическую прокладку, планировать маршрут перехода, обеспечивать автоматизированную сигнализацию для привлечения внимания судоводителя при отклонении от запланированного пути или контролировать место судна. При воспроизведении растровой карты можно изменять ее расположение в различных вариантах: ориентация «Север», «Курс» или любое другое по желанию судоводителя. При изменении ориентации карты все надписи поворачиваются вместе с изображением. Данная особенность сторонников векторных карт трактуется не как недостаток, а скорее как достоинство, позволяющее избежать возможной ошибки оператора, естественным образом напоминая ему о том, что карта расположена нестандартно. В то же время осуществление разворота обеспечивает возможность совмещения карты с радиолокационным изображением.

Все надписи на растровых картах увеличиваются или уменьша­ются пропорционально увеличению или уменьшению размера вос­производимой карты. В случае, когда воспроизводится значитель­ный участок, он может выглядеть переполненным пояснительными надписями, которые будут затруднять чтение. При уменьшении размеров воспроизводимого района, пояснительные надписи увеличиваются, приобретая чрезмерный размер, также мешают чтению карты. Поэтому при выполнении предварительной прокладки на ECDIS рекомендуется уменьшить нагрузку карты (например, отменить изображение всех глубин, кроме минимально допустимых).

Значительное преимущество растровых систем перед бумажными картами - это возможность ведения автоматической прокладки, отображение положения судна относительно окружающей обстановки в режиме реального времени. Существующее навигационное программное обеспечение сопрягается с системами определения места судна.

Производство векторных карт наиболее трудоемко. Оно заклю­чается в первоначальном сканировании карты, а затем векторизации этой карты, т.е. перевода различных линейных, площадных и точечных объектов в цифровой код. Такими предметами являются: берега, осушки, изобаты, изолированные опасности (подводные, надводные, осыхающие скалы, затонувшие суда), буи, маяки, различные ограждающие линии и т. д.

Некоторые фирмы применяют смешанную технологию цифро­вания: наиболее сложные объекты сканируют, а затем векторизуют, а точечные объекты цифруют одновременно с векторизацией.

При работе с такой картой в ECDIS имеется возможность реагировать на любой объект, так как он имеет свой код. Это позволяет судоводителю разгружать карту, т. е. удалять с экрана дополнительную и не имеющую особого значения информацию. Например, для судна с осадкой 10 метров можно убрать все глубины более 20 м.

Очевидно, что по информативности векторные карты лучше растровых и позволяют решать более широкий круг задач, связан­ных с безопасностью судовождения.

Основная концепция ECDIS состоит в том, что точность и пол­нота ЭК должны быть эквивалентны (или не менее) точности и полноте бумажной карты.

Процедура планирования перехода судна на ECDIS, в общем, ничем не отличается от ее выполнения без применения цифровых технологий, но прежде, чем приступать к работе с ECDIS, необхо­димо ознакомиться с ее функциональными возможностями и огра­ничениями.

Основные функциональные возможности ECDIS сводятся к следующим возможностям:

- Работа с ЭК:

- автоматические:

* изменение масштаба,

* выполнение корректуры;

Возможность изменения состава отображаемой картографи­ческой информации;

Получение дополнительной справочной информации о кар­тографических объектах;

Планирование и выполнение предварительной прокладки маршрута перехода с проверкой на наличие навигационных опасностей в полосе заданного движения судна и проведением расчетов скорости, расстояний, времени плавания и т. п.

Контроль за местоположением судна:

Отображение обсервованных (счислимых) географических координат места судна;

Автоматическое ведение счисления и текущей прокладки с отображением траектории судна;

Измерение пеленгов и дистанций как от местоположения собственного судна до любого объекта, так и от любого местоположения на карте до любого объекта;

Отображение векторов движения судна относительно грунта и относительно воды (по данным гирокомпаса и лага);

Автоматическая оценка навигационной безопасности плава­ния на основе использования цифровой модели навигационно-гидрографической обстановки в ЭК и сигнализации об опасных собы­тиях;

Совмещение радиолокационной и навигационно-гидрогра- фической информации;

Обеспечение проигрывания маневра для безопасного расхождения с другими судами (при сопряжении с САРП);

Введение поправок в счислимые координаты места судна по данным обсерваций, полученным традиционными методами;

Автоматическое ведение судового журнала.

Оценка информации по району плавания:

Получение информации

* по портам,

* по приливам,

* по течениям;

* климатических данных;

Расчет направления и скорости истинного ветра;

Расчет остаточной скорости при движении по маршруту пе­рехода;

Просмотр архивных данных.

Указанные функциональные возможности ECDIS определяют следующие преимущества перед бумажной картой:

Обеспечение судоводителя интегральной навигационной об­становкой на основе объединения информации от различных технических средств навигации (РЛС, САРП, СНС и др.);

Уменьшение искажений масштаба и направлений на сис­темной электронной навигационной карте (SENC) путем автома­тического размещения главной параллели карты в середине экрана;

Повышение навигационной безопасности на основе более подробного учета гидрографической обстановки по цифровой модели карты и ее оценки по результатам совмещения радиолокационной и картографической обстановки;

Автоматическая корректура ЭК.

Главное же достоинство ECDIS заключается в повышении уровня автоматизации деятельности судоводителя, его обеспечение более надежной и достоверной непрерывной информацией о картографической и навигационной обстановке, местоположении судна, осуществление непрерывного ведения автоматической прокладки пути, уменьшение и исключение погрешностей при измерениях, опознании и расчетах.

Таким образом, применение ECDIS на судах дает возможность коренным образом улучшить организацию работы судоводителей и снизить навигационную аварийность.

Однако ECDIS свойственны определенные ограничения:

ЭК отображают на обычных дисплеях примерно 1/6 часть бумажной карты традиционных размеров при одинаковом масштабе.

Из-за этого требуется более частая смена изображения. Частичное устранение этого ограничения достигается применением двух дисплеев, на одном из которых отображается мелкомасштабная карта района, а на другом - карта части этого района, но в более крупном масштабе;

Из-за наличия в ECDIS электронного изменения масштаба возможно отображение карты в таком крупном масштабе, при котором не обеспечивается необходимая точность измерений и не поддерживается детальное содержание ЭК. В этом случае оператору ECDIS должно автоматически выдаваться соответствующее предупреждение об опасном масштабе карты;

При работе с дисплеями наблюдается повышенная утомляе­мость операторов;

Для работы с ECDIS необходима специальная подготовка судоводительского состава в целях ее эффективного использования и преодоления психологического барьера перед новыми нетрадиционными техническими средствами.

Реферат на тему

Геоинформационные системы: электронная картография


Введение

1.Что такое электронное картографирование

2.Модели ГИС

3.Решаемые задачи

4. Кому нужны ГИС

Литература


Введение

Информация о реальных объектах и событиях в той или иной мере содержит так называемую пространственную составляющую. Пространственный аспект имеют здания и сооружения, земельные участки, водные, лесные и другие природные ресурсы, транспортные магистрали и инженерные коммуникации. Уже давно доказано, что 80-90 % всех данных составляют геоданные, т. е. не просто абстрактные, безличные данные, а информация, имеющая свое определенное место на карте, схеме или плане.

Каждый из нас хоть однажды в своей жизни работал с бумажной картой. С появлением компьютеров появились и компьютерные карты, которые обладают множеством дополнительных и полезных свойств.


1. Что такое электронное картографирование

В отличие от бумажной карты, электронная карта, содержит скрытую информацию, которую можно использовать по мере необходимости. Эта информация представляется в виде слоев, которые называются тематическими, потому что каждый слой состоит из данных определенной тематики (рис. 1). Например, один слой электронной карты может содержать сведения о дорогах, второй - о проживающем населении, третий - о фирмах и организациях и т. д. Каждый слой можно просматривать по отдельности, совмещать сразу несколько слоев или выбирать отдельную информацию из различных слоев и выводить ее на карту.

Электронную карту можно легко масштабировать на экране компьютера, перемещать в разные стороны, рисовать и удалять объекты, печатать на принтере любые территории. Кроме того, компьютерная карта обладает и другими свойствами. Например, можно запрещать (или разрешать) отображать на экране определенные объекты. Выбрав объект с помощью мыши, можно запросить информацию о нем, например, высоту и площадь дома, название улиц и др.

Именно с появлением электронных карт появился и другой термин «геоинформационные системы» (ГИС). Существуют десятки определений геоинформационных систем (их еще называют и географическими информационными системами). Но большинство специалистов склоняются к тому, что определение ГИС должно базироваться на понятии СУБД. Поэтому можно сказать, что ГИС - это системы управления базами данных, предназначенные для работы с территориально-ориентированной информацией.

Рис. 1. Основу большинства современных ГИС-приложений составляют информационные слои

Важнейшей особенностью ГИС является способность связывать картографические объекты (т. е. объекты, имеющие форму и местоположение) с описательной, атрибутивной информацией, относящейся к этим объектам и описывающей их свойства (рис. 2).

Как было отмечено выше, в основе построения ГИС лежит СУБД. Однако, вследствие того, что пространственные данные и разнообразные связи между ними достаточно сложно описать реляционной моделью, полная модель данных в ГИС имеет смешанный характер. Пространственные данные специальным образом организованы, и эта организация не базируется на реляционной концепции. Напротив, атрибутивная информация объектов (семантические данные) вполне удачно может быть представлена реляционными таблицами и соответствующим образом обрабатываться.



Рис. 2. В электронных картах даже обычная точка может сопровождаться коллекцией фотографий, дающей представление об этой местности

Объединение моделей данных, лежащих в основе представления пространственной и семантической информации в ГИС, образует геореляционную модель.

Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам или ссылки на адрес, почтовый индекс, идентификатор земельного или лесного участка, название дороги и др. (рис. 3). При использовании подобных ссылок для автоматического определения местоположения объекта применяется процедура геокодирования. С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект.

Более перспективным является бесслоевой объектно-ориентированный подход к представлению объектов на цифровой карте. В соответствии с ним объекты входят в классификационные системы, которые отражают определенные логические отношения между объектами предметных областей. Группировка объектов разных классов для разных целей (отображения или анализа) производится более сложным способом, однако, объектно-ориентированный подход более близок к характеру человеческого мышления, чем послойный принцип.



Рис. 3. В современных ГИС-приложениях можно производить необходимые расчеты грузоперевозок

2.Модели ГИС

Так как ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми, то существует и две модели ГИС.

В векторной модели кодированная информация о точках, линиях и полигонах хранится в виде набора координат X, Y (в некоторых ГИС часто добавляется третья пространственная и четвертая, например, временная координата). Местоположение точки (точечного объекта), например, здания, описывается парой координат (X, Y). Линейные объекты, такие как дороги или реки, сохраняются как наборы координат X, Y. Полигональные объекты типа земельных участков или областей обслуживания хранятся в виде замкнутого набора координат. Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как плотность населения.

Растровая модель оптимальна для работы с непрерывными свойствами, так как растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке.

3.Решаемые задачи

ГИС общего назначения обычно выполняет несколько задач:

Ввод данных;

Манипулирование и управление ими;

Информационный запрос и его анализ;

Визуализация данных.

Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных из бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов, либо при сравнительно небольшом объеме работ данные можно вводить с помощью дигитайзера. Некоторые ГИС имеют встроенные векторизаторы, автоматизирующие процесс оцифровки растровых изображений. Часто для выполнения конкретного проекта имеющиеся картографические данные нужно изменить. Для совместной обработки и визуализации все данные удобнее представить в едином масштабе и одинаковой картографической проекции. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи. В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять СУБД, специальные компьютерные средства для работы с интегрированными наборами данных. При наличии ГИС и географической информации можно получать ответы, как на простые вопросы, так и на более сложные, требующие дополнительного анализа, запросы. Запросы можно задавать как простым щелчком кнопкой мыши на определенном объекте, так и посредством развитых аналитических средств. Процесс наложения (пространственного объединения) включает интеграцию данных, расположенных в разных тематических слоях. Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками, таблицами, диаграммами, фотографиями и другими средствами, например, мультимедийными.

4. Кому нужны ГИС

1. Предпринимателям.

Люди, занимающиеся бизнесом, могут использовать ГИС в разных областях своей деятельности для анализа и отслеживания текущего состояния и тенденций изменения интересующей их области рынка.

2. Руководителям предприятий.

Благодаря возможности ГИС связывать объекты схемы производственного цикла с чем угодно по щелчку кнопки мыши, обеспечивается эффективное управление производственным процессом, предотвращение аварий сводится к минимуму операции, повышается надежность и уменьшается потребность в персонале.

3. Нефтяникам и газовикам.

4. Охранным службам.

ГИС позволит определить оптимальное расположение камер наблюдения и других устройств, выдавать их сообщения в реальном времени, распечатывать отчеты в заданное время.

5. Транспортным службам.

Благодаря ГИС, в любой момент можно узнать, где находятся грузовики, состояние дорожного покрытия, информацию о пробках на дорогах, эффективнее рассчитывать загруженность транспорта и оптимизировать маршрут движения.

6. Пожарникам.

Пожарные команды получают мощное средство по координированию действий отдельных подразделений, по охвату и наблюдению за большей площадью, расчету направления огня и прогнозированию скорости его распространения.

7. Маркетологам.

Использование ГИС-приложений помогает переориентировать главную цель маркетинговых усилий с удовлетворения осредненных потребностей населения города или района на оперативное реагирование на запросы каждого человека, живущего или работающего в зоне реализации товаров фирмы.

С помощью ГИС можно проводить необходимые демографические исследования, выяснять, где проживают ваши потенциальные клиенты и по каким дорогам ездят (на самых загруженных и лучше освещенных разместить рекламные щиты).

9. Почтовым службам.

К соответствующим картам привязаны места проживания клиентов, маршруты и расписания авиарейсов, границы административных районов, другая полезная информация, позволяющая справиться с возрастающими потоками корреспонденции.

10. Банкам.

ГИС поможет вам точно и эффективно расположить филиалы, осуществить инкассацию, оперировать ресурсами в соответствии с состоянием рынка ценных бумаг и других факторов.

11. Экологам.

Использование ГИС позволяет наблюдать и оценивать состояние земной и водной поверхности районов, подверженных экологическим катастрофам.

12. Вооруженным силам.

ГИС помогут связать с географическими данными оперативно-тактическую информацию, а также отслеживать переброску войск и техники в районах боевых действий.

13. Администрациям.

Для городских и районных администраций ГИС являются необходимым инструментом в управлении коммунальными, дорожными и другими службами, обеспечивающими жизнедеятельность городов и населенных пунктов.

5. Краткий обзор средств разработки ГИС

Универсальное и наиболее распространенное средство для создания ГИС ARC/INFO служит для обеспечения компьютерного картографирования и оперативного принятия решений. Оно работает с любыми видами информации, имеющей привязку к территории. С помощью ARC/INFO можно легко получить в цифровой форме любую карту, схему, видеоизображение или рисунок, ввести табличные, статистические и другие тематические данные, привязанные к объектам карты. ARC/INFO позволяет работать с сериями карт, накладывая одну карту на другую, и проводить их сопряженный анализ, создавать «твердые» копии необходимых карт и схем.

Упрощенная версия ARC/INFO - Arcview - поддерживает внутренний формат SHAPE и внутренний язык программирования AVENUE. Но при использовании этой системы для больших по объему слоев проявляется эффект процессорозависимости, т. е. нужно иметь мощные ресурсы процессора и памяти, чтобы эффективно работать с ней. В ее поставку входят дополнительные модули для анализа геоинформационных данных 3D-Analyst и SpatialAnalyst.

Полнофункциональная оболочка географических информационных систем среднего класса ATLAS GIS содержит все обычные средства ввода, редактирования и печати/рисования карт, развитые презентационные средства (полное управление цветами и штриховками, создание и редактирование символов, многочисленные вставки, тематическое картографирование, бизнес-графику). Кроме того, она поддерживает работу с растровыми проектами (растровые подложки), позволяет группировать данные по географическому признаку, создавать буферные зоны, специальные средства обработки данных, основанные на библиотеке встроенных функций и операторов, развитые функции импорта и экспорта данных в другие форматы.

При разработке ГИС-приложений среда разработки Maplnfo Professional обеспечивает доступ к базам данных Oracle8i, хранилищам данных на сервере и управление ними, создание тематических карт, создание и запись SQL-запросов. Кроме того, эта среда разработки поддерживает растровые форматы, включая BMP, JPG, TIFF, MrSID, имеет универсальный преобразователь для форматов AutoDesk, ESRI и Intergraph. Начиная с версии 6, обеспечивается поддержка Интернета и трехмерных изображений, а также усовершенствованы средства геокодирования информации.

Еще одна популярная среда разработки AutoCAD Map обладает всеми инструментами программы AutoCAD 2000, а также специализированными возможностями для создания, отслеживания и производства карт и географических данных. Она позволяет работать с широким спектром файловых форматов и типов данных, обеспечивает возможность связи с базами данных и включает основные инструменты ГИС-анализа. Используя AutoCAD Map, можно связывать карты с ассоциативными базами данных, добавлять данные в карты и делать их более интеллектуальными, чистить карты, строить узловую, сетевую и полигональную топологию для анализа, создавать тематические карты с легендами, работать с существующими данными карты в других системах координат и файловых форматах, импортировать данные из других CAD и ГИС-систем, экспортировать данные в другие форматы, распечатывать карты и атласы.

Главными преимуществами российской системы GEOGRAPH-GE-ODRAW является функциональность и невысокая цена. Она состоит из трех основных модулей:

Geograph (модуль конечного пользователя, фактически - это про-смотрщик);

Geodraw (векторный топологический редактор);

Geoconstructor (средство разработки приложений).

Программный комплекс GeoCad Systems (www.qeocad.ru) предназначен для разработки и последующего операционного обслуживания информационных систем целевого (преимущественно, кадастрового) назначения конечного пользователя. Модули управления базами данных этой системы реализованы в среде MS Access, предоставляющей пользователям мощный инструмент разработки и адаптации клиент-приложений системы.

Для обработки графической информации объектов (отображения метрических данных и их графического редактирования) в комплект модульной многоцелевой кадастровой системы Geocad System входит специализированный модуль CPS Graph. Он является неотъемлемой частью.

ГИС ИнГЕО (www.integro.ru) - система, в которой пользователь сам может конструировать библиотеки любых векторных символов, линий, заливок. Это наиболее эффективная ГИС для создания топопланов масштаба 1:10000 - 1:500. Она имеет развитую инструментальную систему в технологии lnternet\lntranet, с помощью которой пользователь может самостоятельно строить сложнейшие реляционные таблицы семантических данных картографических объектов. ИнГЕО имеет мощную кадастровую надстройку - систему ИМУЩЕСТВО и систему МОНИТОРИНГ.

Система TopoL представляет собой универсальную ГИС, применимую во многих отраслях для решения разнообразных прикладных задач. Она позволяет выполнять весь комплекс работ по созданию, редактированию, анализу и использованию цифровых карт местности. Ее вариант TopoL-L предназначен для лесхозов и лесоустройства.

Интерфейс программы ориентирован на отраслевые задачи, отличается простотой и функциональностью. Стандартное меню исходного программного продукта отсутствует. Меню содержат только те пункты, которые необходимы пользователю.

Развитие Интернета не обошло стороной и картографию. Так, картографическое ПО для Интернета позволяет публиковать готовые тематические карты во Всемирной сети. Серверные картографические приложения, разработанные для внедрения интерактивных карт в Интернете, имеют широкий набор картографических функций. Одним из таких программных продуктов, предназначенных для публикации и сопровождения картографической информации в Интернете, является MapXtreme - сервер картографических приложений, созданный корпорацией Maplnfo. Открытая архитектура MapXtreme работает с любым Web-сервером и не нуждается в дополнительных plug-ins, что позволяет использовать любые браузеры на ПК или рабочих станциях UNIX. Еще один продукт этой корпорации, MapXsite, позволяет достаточно легко встраивать в Web-страницы картографическую информацию.

6. Некоторые украинские разработки

Атлас Украины является первым полнофункциональным геоинформационным продуктом всеукраинского значения. Он был разработан совместными усилиями сотрудников киевской компании Интеллектуальные Системы ГЕО и Института географии Национальной Академии Наук Украины.

Электронный Атлас Украины рассчитан на широкий круг пользователей и предназначен прежде всего для справочно-информационных и пользовательских целей. Он позволяет получить общее и достаточно полное представление об изображенных на его картах природных и социально-экономических процессах и может стать учебником при изучении этих процессов. Главной составляющей информационного обеспечения Атласа Украины является набор электронных карт. Он включает в себя информацию о геополитическом положении Украины, ее истории, природных условиях и ресурсах, населении, культуре, религии, экономических и социальных условиях проживания населения, финансах и бизнесе, политике и экологии.

Среди функциональных возможностей Атласа Украины следует выделить изменение масштаба карты для более детального просмотра, получение информации о просматриваемых объектах, возможность поиска информации на карте по ключевому слову, возможность печати картографических материалов.

Атлас Украины доступен и в Интернете: на Web-сайте компании Интеллектуальные Системы ГЕО (www.isgeo.kiev.ua) можно увидеть интерактивные карты Киева (масштаб 1:50000) и Украины (1:500000).

Другая известная в Украине ГИС - ВИЗИКОМ-КИЕВ (разработчик - киевская компания ВИЗИКОМ (www.visicom.kiev.ua)) - ориентирована на широкий круг пользователей, которым для принятия решений необходимо осуществлять анализ картографических данных, контроль собственных объектов, а также поиск и отображение объектов на плане города Киева. Система, отличается легкостью использования, в то же самое время предоставляет достаточно широкие возможности поиска и отображения данных. Она предоставляет пользователю возможности отображения произвольного фрагмента плана города, определения расположения на плане улиц города по их названиям и почтовому адресу. Также с помощью этой системы можно получить информацию об учреждениях, предприятиях и организациях города, выполнять поиск учреждений, предприятий и организаций, расположенных в городе Киеве по различным критериям, создавать дополнительные информационные слои на плане города, выводить на печатающее устройство необходимые фрагменты плана и алфавитно-цифровые характеристики отдельных предприятий или объектов собственных информационных слоев пользователя, просматривать и искать объекты транспортной сети украинской столицы, планировать оптимальные маршруты движения.

С конца 1998 года в Украине используется первая версия графической информационной системы сети железных дорог ТМкарта (www.tmsoft-ltd.com). Она имеет удобный графический интерфейс, позволяет отображать транспортную сеть железных дорог по всей территории Украины, СНГ и Балтии, автоматически отслеживать движение вагонов по всему пути их следования.


В процессе написания реферата мы ознакомились с электронным картографированием, моделями ГИС, решаемыми задачами ГИС, кому могут понадобиться ГИС, произвели краткий обзор существующих ГИС и ГИС украинского происхождения. Данный реферат может быть полезен для студентов различных специальностей, которые используют различные географические карты в процессе обучения.


Литература

1. Антонов А.В. Системный анализ. Методология. Построение модели: Учеб. пособие. - Обнинс: ИАТЭ, 2001. - 272 с.

2. Богданов А.А. Тетология: В 3 т. - М., 1905-1924.

3. Венда В.Ф. Системы гибридного интеллекта: эволюция, психология, информатика. - М.: Машиностроение, 1990. - 448 с.

4. Волова В.Н. Основы теории систем и системного анализа/ В.Н. Волова, А.А. Денисов. - СПб.: СПбГТУ, 1997. - 510 с.

5. Волова В.Н. Методы формализованного представления систем/ В.Н. Волова, А.А. Денисов, Ф.Е. Темнигов. - СПб.: СПбГТУ, 1993. - 108 с.

6. Гасаров Д.В. Интеллетальные информационные системы. - М.: Высш. ш., 2003. - 431 с.

7. Гелшов В.М. Введение в АСУ. - Киев: Техника, 1974.

8. Дегтярев Ю.И. Системный анализ и исследования операций. - М.: Высш. ш., 1996. - 335 с.

9. Корячов В.П. Теоретичесие основы САПР: Учеб. для вузов/ В.П. Корячо, В.М. Крейчи, И.П. Норенов. - М.: Энергоатомиздат, 1987. - 400 с.

10. Мамионов А.Г. Основы построения АСУ: Учеб. для взов. - М.: Высш. ш., 1981. - 248 с.

11. Меньов А.В. Теоретичесие основы автоматизированного управления: Учеб. пособие. - М.: МГУП, 2002. - 176 с.

12. Острейовский В.А. Автоматизированные информационные системы в экономике: Учеб. пособие. - Ср т: СрГУ, 2000. - 165 с.

13. Острейовский В.А. Современные информационные технологии экономистам: Учеб. пособие. Ч. 1. Введение в автоматизированные информационные технологии. - Ср т:СрГУ, 2000. - 72 с.

14. Автоматизированные информационные технологии в экономике/Под ред. проф. Г.А. Титоренко. - М.: Компьютер, ЮНИТИ, 1998.- 400 с.

15. Автоматизированные информационные технологии в банковской деятельности / Под ред. проф. Г.А. Титоренко. - М.: Финстатинформ, 1997.

Компьютеры коренным образом изменили картографию, упростив сбор и показ всего комплекса данных, предназначенных для составления карты. Информация по геоморфологии и рельефу местности, полученная с надземных и спутниковых съемок, может быть выражена в цифрах и введена в компьютер для дальнейшего использования при составлении карт.

Точно так же уже существующие карты могут быть просканированы и выражены в цифровой форме в виде компьютерных данных. Картографические базы данных могут также включать информацию о городах, автомобильных и железных дорогах, флоре и хозяйственной деятельности человека на данной территории. Поскольку вся информация записана в компьютер в цифровой форме, она может быть реорганизована различными способами в зависимости от предназначения карты. К примеру, карта городской водопроводной сети и сточных труб может быть использована для анализа работы канализационной сети и разработки мер по ликвидации утечки воды. Такая карта может включать также схему газовых труб, электрической сети и всех подземных коммуникаций. Когда город строит новые сети, компьютерная карта может быть легко изменена без необходимости составления новых чертежей.

Трехмерные данные могут быть введены в Стерео-цифровую программестическую станцию (СЦПС) с использованием параллаксовых или зрительных смещений на надземных фотографиях, снятых разными камерами.

Данные преобразуются в цифры либо при помощи мыши, которой водят по карте, либо на основе структурного чертежа и введения координат для каждого элемента карты.

Компьютерная картография

Картографические данные из различных источников могут быть представлены в виде цифр и записаны в памяти компьютера. Затем данные могут быть обработаны для составления карт различного назначения.

Картографическая база данных. Разделяется на Пласты базы данных, данные о дорогах, данные о строительстве, данные о трубах и т.д. Различные типы картографической информации могут быть собраны и записаны в отдельные пласты компьютерной базы данных. При необходимости информация может быть извлечена по отдельности или в комбинации.

Рабочая станция для картографической информационной системы.


Городская планировка может быть усовершенствована с помощью карты, содержащей существенную информацию о домах и зданиях, как это показано на карте одного из японских городов.


Строительные планы могут опираться на карты, содержащие информацию о трубах и других подземных сетях, чтобы строители знали, где можно и где нельзя копать.

От карт к графике

Данные, привлеченные к составлению карты, могут быть использованы для создания компьютерной графики, нанесенной на карту местности. Эта способность компьютера наглядно демонстрирует многогранность компьютерной картографии.

Электронная Картографическая Навигационная Информационная Система, – ЭКНИС “OCEAN3D”, –

Основные базовые понятия

Eng: ECDIS: Electronic Chart Display & Information System

основана на использовании и отображении цифровой картографи­ческой и навигационно-гидрографической информации в виде электронных карт. Они представляют собой перспективные интегрированные информационные системы, предназначенные для решения комплекса задач судовождения, автоматизации работы судоводителя и повышения навигационной безопасности мореплавания.

Интегрированность ECDIS подразумевает, что они объединяют информацию о местоположении судна на основании счисления ко­ординат по данным лага и гирокомпаса, обсерваций по спутнико­вым навигационным системам, в совокупности с картографической и радиолокационной информацией о навигационной обстановке.

Информационное назначение ECDIS определяется ее способностью представлять судоводителю параметры картографических объектов (ориентиров, опасностей, фарватеров, глубин и др.) и данные об условиях плавания по всему маршруту перехода.

Навигационное назначение определяется решением как тради­ционных задач (счисление, прокладка, введение поправок в счислимые координаты, помощь в удержании судна на заданном курсе и др.), так и новых задач по оценке навигационной безопасности плавания, выработке рекомендаций по безопасному маневрированию, автоматизации процессов и процедур с электронной картой (ЭК) и ее использованию для мореплавания.

Электронные навигационные карты разделяются на растровые и векторные.

Растровые карты нашли более широкое применение в видеопрокладчиках различных фирм для обеспечения нужд море­плавания.

Сегодня национальные гидрографические службы про­изводят такие системы и подтверждают возможность их использо­вания.

Растровые навигационные карты представляют собой точные копии бумажных карт.

Они получаются путем сканирования с высоким разрешением бумажных карт или их пластиковых аналогов с последующей обработкой, включая уменьшение размеров файла с помощью методов сжатия информации, добавления данных для его описания, проекции и т. п.

Последующая обработка позволяет современному программно­му обеспечению производить автоматическую прокладку, планировать маршрут перехода, обеспечивать автоматизированную сигнализацию для привлечения внимания судоводителя при отклонении от запланированного пути или контролировать место судна. При воспроизведении растровой карты можно изменять ее расположение в различных вариантах: ориентация «Север», «Курс» или любое другое по желанию судоводителя. При изменении ориентации карты все надписи поворачиваются вместе с изображением. Данная особенность сторонников векторных карт трактуется не как недостаток, а скорее как достоинство, позволяющее избежать возможной ошибки оператора, естественным образом напоминая ему о том, что карта расположена нестандартно. В то же время осуществление разворота обеспечивает возможность совмещения карты с радиолокационным изображением.

Все надписи на растровых картах увеличиваются или уменьша­ются пропорционально увеличению или уменьшению размера вос­производимой карты. В случае, когда воспроизводится значитель­ный участок, он может выглядеть переполненным пояснительными надписями, которые будут затруднять чтение. При уменьшении размеров воспроизводимого района, пояснительные надписи увеличиваются, приобретая чрезмерный размер, также мешают чтению карты. Поэтому при выполнении предварительной прокладки на ECDIS рекомендуется уменьшить нагрузку карты (например, отменить изображение всех глубин, кроме минимально допустимых).

Значительное преимущество растровых систем перед бумажными картами - это возможность ведения автоматической прокладки, отображение положения судна относительно окружающей обстановки в режиме реального времени. Существующее навигационное программное обеспечение сопрягается с системами определения места судна.

Производство векторных карт наиболее трудоемко. Оно заклю­чается в первоначальном сканировании карты, а затем векторизации этой карты, т.е. перевода различных линейных, площадных и точечных объектов в цифровой код. Такими предметами являются: берега, изобаты, изолированные опасности (подводные, надводные, осыхающие скалы, затонувшие суда), буи, маяки, различные ограждающие линии и т. д.

Некоторые фирмы применяют смешанную технологию цифро­вания: наиболее сложные объекты сканируют, а затем векторизуют, а точечные объекты цифруют одновременно с векторизацией.

При работе с такой картой в ECDIS имеется возможность реагировать на любой объект, так как он имеет свой код. Это позволяет судоводителю разгружать карту, т. е. удалять с экрана дополнительную и не имеющую особого значения информацию. Например, для судна с осадкой 10 метров можно убрать все глубины более 20 м.

Очевидно, что по информативности векторные карты лучше растровых и позволяют решать более широкий круг задач, связан­ных с безопасностью судовождения.

Основная концепция ECDIS состоит в том, что точность и пол­нота ЭК должны быть эквивалентны (или не менее) точности и полноте бумажной карты.

Процедура планирования перехода судна на ECDIS, в общем, ничем не отличается от ее выполнения без применения цифровых технологий, но прежде, чем приступать к работе с ECDIS, необхо­димо ознакомиться с ее функциональными возможностями и огра­ничениями.

Основные функциональные возможности ECDIS сводятся к следующим возможностям:

* изменение масштаба;

* выполнение корректуры;

Возможность изменения состава отображаемой картографи­ческой информации;

Получение дополнительной справочной информации о кар­тографических объектах;

Планирование и выполнение предварительной прокладки маршрута перехода с проверкой на наличие навигационных опасностей в полосе заданного движения судна и проведением расчетов скорости, расстояний, времени плавания и т. п.

Контроль за местоположением судна:

Отображение обсервованных (счислимых) географических координат места судна;

Автоматическое ведение счисления и текущей прокладки с отображением траектории судна;

Измерение пеленгов и дистанций как от местоположения собственного судна до любого объекта, так и от любого местоположения на карте до любого объекта;

Отображение векторов движения судна относительно грунта и относительно воды (по данным гирокомпаса и лага);

Автоматическая оценка навигационной безопасности плава­ния на основе использования цифровой модели навигационно-гидрографической обстановки в ЭК и сигнализации об опасных собы­тиях;

Совмещение радиолокационной и навигационно-гидрогра- фической информации;

Обеспечение проигрывания маневра для безопасного расхождения с другими судами (при сопряжении с САРП);

Введение поправок в счислимые координаты места судна по данным обсерваций, полученным традиционными методами;

Автоматическое ведение судового журнала.

Оценка информации по району плавания:

Получение информации

* по портам,

* по приливам,

* по течениям;

* климатических данных;

Расчет направления и скорости истинного ветра;

Расчет остаточной скорости при движении по маршруту пе­рехода;

Просмотр архивных данных.

Указанные функциональные возможности ECDIS определяют следующие преимущества перед бумажной картой:

Обеспечение судоводителя интегральной навигационной об­становкой на основе объединения информации от различных технических средств навигации (РЛС, САРП, СНС и др.);

Уменьшение искажений масштаба и направлений на сис­темной электронной навигационной карте (SENC) путем автома­тического размещения главной параллели карты в середине экрана;

Повышение навигационной безопасности на основе более подробного учета гидрографической обстановки по цифровой модели карты и ее оценки по результатам совмещения радиолокационной и картографической обстановки;

Автоматическая корректура ЭК.

Главное же достоинство ECDIS заключается в повышении уровня автоматизации деятельности судоводителя, его обеспечение более надежной и достоверной непрерывной информацией о картографической и навигационной обстановке, местоположении судна, осуществление непрерывного ведения автоматической прокладки пути, уменьшение и исключение погрешностей при измерениях, опознании и расчетах.

Таким образом, применение ECDIS на судах дает возможность коренным образом улучшить организацию работы судоводителей и снизить навигационную аварийность.

Однако ECDIS свойственны определенные ограничения:

ЭК отображают на обычных дисплеях примерно 1/6 часть бумажной карты традиционных размеров при одинаковом масштабе.

Из-за этого требуется более частая смена изображения. Частичное устранение этого ограничения достигается применением двух дисплеев, на одном из которых отображается мелкомасштабная карта района, а на другом - карта части этого района, но в более крупном масштабе;

Из-за наличия в ECDIS электронного изменения масштаба возможно отображение карты в таком крупном масштабе, при котором не обеспечивается необходимая точность измерений и не поддерживается детальное содержание ЭК. В этом случае оператору ECDIS должно автоматически выдаваться соответствующее предупреждение об опасном масштабе карты; Like this.

© 2024 mnogodropa.ru - Windows. Железо. Интернет. Безопасность. Операционные системы. Железо